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To avoid the drawbacks of traditional fractal theory, such as complicated calculation and the difficulty in choosing the 

proper kind of fractal dimension, a wavelet fractal algorithm is proposed in this paper for the feature extraction of a 

hydro-turbine vibration signals. In this algorithm, wavelet functions are used to decompose the de-noised signal. After 

decomposition, variance of each level of the detailed components is introduced to describe the energy distribution on each 

level. The fractal dimension is the slope of the fitting line by taking scale j as the horizontal axis and variance as the vertical 

axis. To verify the theory introduced in this paper, a comparison of the wavelet fractal algorithm with the conventional 

fractal algorithm on a few sets of experimental vibration signals shows that although both methods are successful in 

feature extraction, the wavelet fractal algorithm provides more accurate feature extraction of hydro-turbine vibration 

signals. 
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1. Introduction 

 

Hydro-turbine is an important component in electric 

power generation. A fault in such a device could lead to 

huge economic losses and, therefore, it is desirable to 

conduct correct and efficient fault diagnosis on this 

facility. Fault diagnosis is performed when a 

hydro-turbine is malfunctioning. It can be used to 

determine the cause(s) responsible from a set of observed 

symptom(s). Vibration signals contain abundant 

information on the operation status of the mechanical 

equipment, and its analysis is of significance to the fault 

diagnosis of rotating machinery, including hydro- 

turbines. Generally, the analysis of vibration signals can 

be divided into two aspects: one is to further understand 

the fault mechanism, and the other is to extract effective 

features for fault diagnosis. Many techniques, like 

traditional FFT analysis, STFT analysis, and high order 

cumulate spectrum analysis, emphasize the frequency 

structure analysis of vibration signals. They aim at 

finding some efficient fault features from the vibration 

signals and have had good application in fault diagnosis. 

Combining these feature extraction methods with pattern 

recognition theories, such as neural network, GMM 

network, fuzzy logic network, Bayesian network, it is 

possible to realize intelligent on-line identification and 

fault diagnosis of machinery vibration signals [1-6]. 

However, these methods have shortcomings as they are 

more concerned about the frequency domain rather than 

the energy distribution and structural features. It is still a 

challenge to explore effective techniques that can extract 

specific features from vibration signals. 

Vibration signals from hydropower stations usually 

demonstrate unstable and transient properties. Some are 

even random variation signals, and these signals show 

fractal features to some extent. The analysis of vibration 

signals has evolved with the development of the 

signal-processing method. Traditional fractal theory has 

been used in the fault diagnosis of hydropower units in 

recent years, and proved to be feasible[7-8]. It provides a 

geometric structure analysis method for complex signals, 

and has a number of successful applications in many 

fields. For example, chaotic fractal theory has been 

applied to the feature extraction of fault diagnosis of gas 

valves in [9] and a three-dimensional fractal 

measurement for a rock joint surface was conducted, and 

studied the relationship between surface fractal 

characteristic and hydro-mechanical behavior was 

studied in [10]. In fault diagnosis of mechanical 

equipment, fractal geometry method is used in vibration 

signal analysis with some fruitful outputs in [11]. 

However, there’s still some significant disadvantages in 

traditional methods. One widely used method of 

conventional fractal theory is GP method in calculating 

the correlation dimension. However, signal features can’t 

be described adequately by the method for it only reflects 

the irregularity of signal as a whole, thus leading to the 

lack of local singularity description [23]. The recently 
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developed wavelet fractal algorithm, however, satisfies 

the requirement of local singularity description as well as 

reflects the whole irregularity of signal. 

The wavelet fractal algorithm has proven 

particularly applicable in the feature extraction of 

vibration signals [12]. However, its application is only 

found in the field of rotating machinery for its novelty. 

Considering the similarity between hydro-turbine 

vibration signals and rotating machinery vibration signals, 

it is felt that the wavelet fractal algorithm might be also 

applicable in the field of hydropower units. The principle 

of fractal-wavelet spectrum is simple: decompose 

vibration signals into different frequency components, 

then calculate the variance of each frequency band 

individually, which describes the energy distribution on 

each level, so as to describe the complexity and 

irregularity of signal on different scales and frequency 

bands. Wavelet fractal algorithm on several sets of 

simulated hydro-power vibration signals is conducted in 

this paper in two steps: first draw the power spectrum of 

the de-noised signal for the chosen wavelet function and 

decomposition level used in the algorithm; then 

decompose the signal and calculate the variance of 

selected decomposed levels, thus acquiring the fractal 

dimension after a few simple mathematical steps. For 

comparison, conventional fractal dimension calculating 

algorithm is also applied on the same set of data. The 

results show that although both methods are successful in 

feature extraction, the proposed wavelet fractal algorithm 

shows better performance in accuracy. 

 

 

2. Fractal dimension and GP method 

 

2.1 Fractal dimension 

 

Non-linear dynamic and chaotic theory can be used 

to describe the irregular, broadband signals, which are 

generic in non-linear dynamic systems. They are 

effective in extracting some physically interesting and 

useful features from such signals. Fractal dimension, the 

capacity dimension, correlation dimension, and 

information dimension,   developed from the non-linear 

dynamic and chaotic theory, is a promising new tool to 

interpret observations of physical systems with a fractal 

structure[12].  

 

2.2 Definition of fractal dimension  

 

There are quite a few classifications of fractal 

dimension: self-similarity dimension, Hausdorff 

dimension, box dimension, correlation dimension, 

information dimension, etc. The definition of fractal 

dimension differs as the classification changes[13]. In 

spite of the differences in the manner of their definitions, 

the essence is the same: measure the fractal diagram or 

signal on a certain scale, then express fractal dimension 

as the ratio of measuring result to the measuring scale. 

For instance, the self-similarity dimension D is defined 

by fractal graphics with strict self-similarity as[22]:  

            (1) 

Assume that the fractal entirety S consists of N 

non-overlapping parts s1, s2, s3,…, sN, and each si part is 

equal to the universal set S after a 1/ri (0< ri<1, 

i=1,2,…,N) time amplification. The strict requirements 

above put a narrow limitation to the range of its 

application. 

The fractal dimension of a set S in a metric space, 

such as a geometric object or the phase space trajectory 

of a dynamic system, can be computed from several 

different measures. One of the most used measures is the 

correlation dimension. A widely used algorithm of 

correlation dimension is the G-P method proposed in 

[14].  

 

2.3 Correlation dimension and  

     Grassberger-Procaccia’s algorithm 

 

It is needed to estimate the dimension of an attractor 

 which is embedded in an m-dimensional Euclidean 

space from a sample of N points on the attractor. That is, 

from the set  with . It is 

suggested in [13] to measure the distance between every 

pair of points and then compute the correlation integral: 

      (2) 

where H(x) is the Heaviside step function. The 

summation counts the number of pairs  for 

which the distance  is less than a given 

positive number r. 

The measure is obtained by considering correlations 

between points of a long-time series on the strange 

attractor. The practical calculation process of correlation 

dimension can be summarized as follows: 

For a given one dimension time series  

with a fixed time increment  and embedded dimension 

set to m, a matrix  is calculated by phase space 

reconstruction: 

 

            (3) 

 

where , i=1,2,…,l. l=N+1-m. 

Take the row vector  of  as 

the point of reconstructed phase space. Measure the 

spatial correlation degree with the correlation 

integral  defined according to: 

 

     (4) 
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where r is a fixed positive number, and is the 

Heaviside function:  

          (5) 

As the positive number r cannot be randomly 

selected because if it is too large, the corresponding 

function of  cannot describe the property of the 

system as all pairs will not be bigger than r. When r is 

reduced properly, a relationship between  and r 

may be established: 

 

                     (6) 

 

where D is the correlation dimension. The solution 

formula of D is obtained as: 

                   (7) 

Therefore, when taking  as the horizontal axis 

and  as the vertical axis, the slope of changing 

curve ( ) is equal to correlation dimension . 

The correlation dimension D is also partially determined 

by the embedded dimension m [8]. Thus, it is essential 

that the principle (k meaning the dimension 

of the attractor) is followed in choosing the value of m, in 

which range D has been proven to be stable at a certain 

number without being influenced by the change of m.  

 

 

3. Fractal wavelet algorithm 

 

3.1 Feasibility of fractal-wavelet combination 

 

Wavelet analysis is a systemic method that adopts 

the local dependence on the entirety, while fractal theory 

determines the overall signal features through studying 

local signal. Increasing number of studies make people 

realize that there is a close relationship between wavelet 

transform and fractal theory.  

Fractal theory indicates that self-similarity (both 

strict and statistical self-similarity) exists among the 

components and the whole system. According to fractal 

theory, the set F generated from function  with 

short support is in the following form: 

 

 , r,H >0           (8) 

 

where r is the self-similarity affine operator, H is a 

dimension-related parameter. 

Generated from flexing and translating the mother 

wavelet , the family of wavelet functions  

can be described as follows: 

,      (9) 

where  is scaling factor, and b is displacement factor. 

By comparing Eq. (8) and Eq. (9), it is not difficult 

to figure out that the self-similarity affine operator r and 

the scaling factor  are consistent, which indicates that 

similarity exists between fractal and wavelet theory. The 

consistency in cognitive process and resemblance in the 

essence of wavelet and fractal theory ensures the 

feasibility of fractal wavelet combination theory.  

 

3.2 Fractal wavelet algorithm 

 

Till now, fractal theory has been widely used in the 

description of special objects. For example, the usage of 

describing the time series signal with white noise and 

Brownian motions is becoming increasingly common [13, 

14, 15]. The signals with white noise and Brownian 

motions are typical 1/f process [16]. 1/f process model has 

been successfully used in the study of physics, biology, 

etc. The power spectrum density function of 1/f process 

demonstrates the relationship below [13, 14, 15]: 

                 (10) 

where  is angular frequency,  represents the 

variance of the original signal.  stands for the spectral 

component parameter, which represents the slope of the 

fitting straight line fitted from the power spectrums of 

different frequency band. Specifically,  equals to 1 for 

white noise and 2 for Brownian motion[17]. There’s a 

relationship between the parameter H which describes 

self-similarity property of signals and [18]: 

                  (11) 

For one-dimension signal: 

    (12) 

So it can be inferred that the relation between  and D 

is: 

                  (13) 

Not being the strict 1/f process, mechanical vibration has 

quite a lot of similarity in the aspect of typical property 

of nonlinear and fractal characteristic. The power 

spectrum of 1/f process centralizes on the low-frequency 

band, while the power spectrum of hydro-turbine unit’s 

fault vibration signal spreads over the low and mid-high 

frequency band. The power spectrum of the vibration 

signal is as follows: 
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 ,(0< )      (14) 

 ,( )          (15) 

where  is peak center of power spectrum. Comparing 

the fault vibration signals’ power spectrum with that of a 

strict 1/f process, there is a similarity in the form of the 

relationship and the difference only lies in a frequency 

shift. 

In the fractal wavelet algorithm, the range of each 

frequency band is determined by the wavelet 

decomposition. After decomposition by orthogonal 

wavelet, the range for each level of detailed composition 

component  is: 

                (16) 

where is the sampling frequency. 

The power spectrum after wavelet decomposition is:  

      (17) 

Furthermore, the  for the signal with zero-mean 

can be represented by the variance of j level detailed 

composition component , denoted as Var( ). Its not 

hard when dealing with the continuous signal x(t) to 

make it zero mean by simply removing the average from 

the original signal during preprocessing. The power 

spectrum is the Fourier transform of self-similarity 

function of the signal, and it satisfies the relationship 

below: 

          (18) 

where  is the power spectrum and  is the 

self-similarity function. So the variance of the signal is 

represented in the form: 

 

 

            (19) 

The integral operator the expectation operator 

E for continuous signal  corresponds to the 

summation operation and average operation for the 

discrete signal , respectively. So the variance and 

power spectrum are equivalent for zero-mean discrete 

signal x(n) as they both measure the energy of the signal: 

      (20) 

Therefore: 

             (21) 

where  is the slope of the fitting straight line fitted 

from the logarithm of  frequency band. The 

variance of detailed component  is defined as: 

       (22) 

where  is the average of the detailed component 

 on scale j.  represents the sampling number of 

detailed component  on scale j, which equals the 

sampling number of the signal to be analyzed. 

The signal processing process is shown in Fig.1: 

 

The input de-noised data

Wavelet  decomposition

Detailed component d2j on scale j

Calculate the variance Var(d2j)

Calculate the logarithm log2 Var(d2j) of previous variance 

Fit a straight line from the logarithm log2Var(d2j)  with scale j as 

the horizon axis. Get the slope  .

Calculate H: H=( -1)/2

Get the fractal dimension D:D=2-H
 

 

Fig.1 Signal processing process of wavelet fractal 

algorithm. 

 

 

4. Studies and engineering applications 
 

To verify the effectiveness of the wavelet fractal 

theory in the feature extraction of a hydro-turbine’s 

vibration signals, an experiment is designed and carried 

out in this section.  

 

4.1 Data acquisition 

 

In order to assure the reliability of data used in the 

method, an experimental rotating machinery system is 
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developed, and the data used in this paper is obtained 

from this physical system. As shown in Fig. 2, the system 

can simulate multiple types of rotating machinery faults. 

It’s driven by a DC motor controlled with DH5600 speed 

controller. The rotor with the diameter of 10 mm and the 

length of 850 mm is composed of two single shafts 

coupled together by a coupling and supported by four 

bearing blocks. Two mass disks with 75 mm diameter are 

also fixed on the rack of the system. The sensors for 

signal acquisition are comprised of two eddy current 

sensors for displacement measurement, a photoelectric 

sensor for speed measurement, and a piezoelectric 

accelerometer for vibration measurement. The signals 

measured by eddy current sensors and piezoelectric 

accelerometer are sent to a proxymitor for filtering, 

amplification, and then the signals are transmitted to 

computer for collection and analysis. 

 

 

 
 

 

 

Fig.2. Experimental machinery system. 

 

Several machine conditions are considered including 

normal, unbalance, and misalignment conditions. The 

unbalance condition is simulated by screwing a 2g mass 

block into the threaded hole near the edge of the mass 

disk 1, while the misalignment condition is simulated by 

misaligning the coupling of the rotor. During the process 

of experimentation, speed of the system is assigned to 

1200 rpm, and the sampling frequency is 2048 Hz. Under 

each of the three conditions, 30 vibration files with 2048 

points are acquired for calculating and comparing two 

feature extraction methods introduced above. One group 

of original data is shown in Fig. 3. 

It can be seen from Fig.3 that the original signals are 

submerged in substantial noises, thus their characteristics 

are blurred. Therefore, it is important to apply signal 

de-noising before conducting feature extraction on the 

signals. The signal de-noising method applied in this 

paper is wavelet transform de-noising[19]. 
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a)The original and de-noised signal under normal 

condition. 
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b)The original and de-noised signal under unbalanced 

condition. 
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c)The original and de-noised signal under misalignment 

condition 

 

Fig.3 the original and de-noised signals under different 

conditions. 
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4.2 Feature extraction 

 

4.2.1 Feature extraction by fractal theory with GP  

     method 

 

 

A generally used fractal dimension algorithm is 

introduced in section 2.3. Grassberger-Procaccia’s (GP’s) 

algorithm is widely used in acquiring the fractal 

dimension for its reliability and simplicity of calculation. 

The key parameters of the GP method are the 

reconstruction phase space dimension m, time delay , 

and the positive scalar r. Adaptive improvements have 

been made to the method, like the principle in the 

selection of reconstructed phase space’s dimension, the 

value of the positive number r. There are some principles 

to follow when applying GP method to the calculation of 

the fractal dimension of fault vibration signals: 

i) The reconstruction phase space dimension m 

should satisfy: , suggesting the attractor of 

the original signal exists in a d-dimensional space. 

ii)  The selection of . If  is too small, the outcome 

curve would shrink to the same direction in space; if the 

value is too large, distortion would occur in the phase 

diagram. The Rosenstein’s recommended value[20] is 

adopted in this article, where , L is the initial 

value of the auto-correlation function. 

iii) The range of r. Studies and research suggest 

that the upper limit should be set to the value where 

 is approximately zero, and the lower limit equals 

the value where the fractal dimension D is close to the 

phase space dimension m. 

Following the principles suggested above, feature 

extraction is conducted on the experimental data. Figs 4 

(a)-(c) demonstrate the double logarithmic curves on 

different fault situations. The scale-free interval of each 

figure is marked on it. There are several curves in each 

figure, corresponding to different values of phase space 

dimension m. Although the curves don not overlap, 

curve-segments within the scale-free interval are similar 

to straight lines and they are parallel with each other. The 

slope of the curve-segment is the fractal dimension D. 

For each of the three fault conditions, 30 sets of data 

were required. Results are listed in Fig. 5. 

 

3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4
0

0.5

1

1.5

2

2.5

3

3.5

4

-ln(r)

-l
n
C

(r
)

The double logarithm curve

Scale-free interval

 
Normal 

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
0

0.5

1

1.5

2

2.5

3

-ln(r)

-l
n
C

(r
)

The double logarithm curve

Scale-free interval

 

Unbalance 

2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

-ln(r)

-l
n

C
(r

)

The double logarithm curve

Scale-free interval

 

Misalignment 

Fig.4. Double logarithm curves for different conditions. 
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Fig.5. Fractal dimension of different conditions using 

GP method. 
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4.2.2 Feature extraction by wavelet fractal  

     spectrum 

 

As shown in Fig.3, vibration signals under different 

circumstances are acquired from the lab and have been 

de-noised. The rotational speed of the experimental 

system is set to 1200 rpm, and the sampling frequency is 

2048 Hz. In order to choose the wavelet function used in 

the method, the power spectrum of the experimental data 

is required. Figs 6 (a)~(c) show the power spectrum 

under normal, unbalance and misalignment conditions, 

respectively. For a clearer view, the spectrum with 

frequency over 200 Hz and zero amplitude is neglected 

in these figs.  
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a) Power spectrum under normal condition. 
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b) Power spectrum under unbalance condition. 
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c) Power spectrum under misalignment condition. 

Fig.6. Power spectrum under different conditions. 

Table 1.Decomposed frequency bands and 

corresponding frequency range. 

 

Level 1 2 3 4 5 6 7 8 

Frequency 

range/Hz 

1024 

- 

2048 

512 

- 

1024 

256 

- 

512 

128 

- 

256 

64 

- 

128 

32 

- 

64 

16 

- 

32 

8 

 - 

16 

 

Table 1 shows the decomposed frequency bands and 
their range of wavelet function 'db8' when the 
decomposition level is set to 8, corresponding to 8 bands. 
The spectrum of different conditions differs in tiny 
details, and the overall feature of power spectrums shown 
in Fig. 6 is that the energy of the signals concentrates in 
the range of 0 to 60 Hz. The detail components on levels 
2 to 7, Table 1, contain the majority of total energy as 
seen in Fig. 7 for different conditions. So they are 
occupied in calculating the fractal dimension. The fitted 
straight lines under different conditions, taking scale j as 
the horizontal axis and the variance  of each 
level as the vertical axis, are shown in Fig. 8. 
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Fig.7. Detail components (levels 2 to 7) under different 

conditions. 
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a) Fitting line under normal condition. 
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b) Fitting line under unbalance condition. 
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c) Fitting line under misalignment condition. 

Fig.8 Fitting lines under different conditions. 

 

For each of the three fault conditions, 30 sets of data 

were acquired. Taking the de-noised signals as the input 

data to the wavelet fractal algorithm, the fractal 

dimensions can be obtained. The obtained fractal 

dimension is shown in Fig. 9.  
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Fig.9. Fractal dimension of different conditions using 

wavelet fractal algorithm. 

 

 

4.3 Analysis and comparison 

 

Two methods of feature extraction using fractal 

dimension in fault diagnosis of hydro-turbine units are 

introduced. In this section, an experimental verification is 

conducted. Figs. 5 and 9 are the outcomes of 

conventional correlation dimension algorithm and novel 

wavelet fractal algorithm, respectively. It can be seen that 

both methods are successful in feature extraction. 

However, more clutter is demonstrated in Fig. 5 and there 

are overlaps between the fractal dimensions under 

normal and unbalanced conditions, while the fractal 

dimensions in Fig. 9 shows clear boundaries among three 

conditions. For a better illustration, statistical parameters 

of both algorithms are calculated and are listed in Table. 

2. 

 

Table 2. Statistical parameters of results using different algorithms. 

 

Algorithm 

 

Condition 

GP method Wavelet fractal 

theory 

Average Standard 

deviation 

Average Standard 

deviation 

Normal 1.3267 0.0379 1.5286 0.0089 

Unbalance 1.4184 0.052 1.4280 0.00749 

Misalignment 3.484 0.261 1.9163 0.0366 
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The reason for the difference in average even under 

the same condition is due to the essence of the methods. 

The GP method considers the absolute fractal dimension 

of the signals, whereas the essence of the wavelet fractal 

theory is to investigate the relative distribution of energy 

on different scales under various conditions, that is, the 

relative distribution of power spectrum on different 

frequency bands. Thus, the fractal dimensions acquired 

from wavelet fractal algorithm is a relative value. The 

standard deviation of wavelet fractal theory is much 

smaller than that of the GP method, which indicates the 

superiority of the wavelet fractal algorithm in the aspect 

of accuracy.  

 

 

4.4 Engineering application 

 

We managed to get a set of normal condition data 

and fault vibration data from a hydropower plant in 

China. The structure of its power generator is 

demonstrated in Fig.10. The power generator were 

noticed on a certain day to be vibrated so intensely that 

the amplitude of the vibration signals exceeded the safety 

threshold. After a series of examination and test, the 

experts diagnosed the fault pattern as unbalance fault. 

After performing counterweight process to the power 

generator, the amplitude of the vibration signals returned 

to normal. 

 

 

 

Fig.10. Sketch of the power generator structure. 

 

The signal acquired before and after the 

counterweight are taken as signals under unbalance and 

normal conditions, respectively. During the process of 

operation, the speed of the power generator was 500 rpm, 

and the sampling frequency was 500Hz. Under each of 

the two conditions, 25 sets of vibration data with 512 

points in each are acquired and de-noised as shown in 

Fig.11, feature extracted with wavelet fractal algorithm.  
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a) The original and de-noised signal under normal 

condition. 
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b) The original and de-noised signal under unbalance 

condition. 

Fig.11. The original and de-noised signal under 

different conditions 

 

The feature extraction process using wavelet fractal 

algorithm is the same as described in section 3. Taking 

the de-noised signals as the input of the process shown in 

Fig.1, vibration signals under normal and unbalance 

conditions are feature extracted respectively, 25 sets of 

data under each condition. Result is demonstrated as 

follows.  
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Fig.12. Fractal dimension of different conditions using 

wavelet fractal algorithm. 
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The fractal dimension under normal and unbalance 

condition divided into two groups with a clear boundary, 

confirming the effectiveness of the proposed feature 

extraction algorithm. However, the standard deviations of 

each condition’s fractal theory are quite big comparing to 

those of the experiment. The reason is that the field test 

data acquired from hydropower station contains more 

information of its surrounding field conditions which 

would influence the vibration signals significantly in 

comparison with the experiment signals. The engineering 

application is a strong verification for the effectiveness of 

the proposed algorithm in feature extraction in fault 

diagnosis of hydropower vibration signals. 

 

 

5. Conclusions 

 

Recently, fractal theory and dimension have been 

developed and applied to fault diagnosis in many fields, 

including the fault diagnosis of hydro-turbine units. 

However, the fractal theory does not include the detail 

components of acquired signals, which may cause 

deviation in diagnosis. A wavelet fractal spectrum 

algorithm is developed in this paper by combining fractal 

theory with wavelet decomposition. The proposed 

method along with the correlation dimension acquired 

from GP method is applied to feature extraction of 

signals measured from experiments under three different 

conditions. Both methods show success in extracting 

features from signals under different conditions. By 

comparing the statistical parameters of the two methods, 

it can be inferred that the feature extracted with wavelet 

fractal spectrum algorithm has higher accuracy and thus 

this algorithm provides a more accurate feature 

extraction method in the fault diagnosis of hydro-turbine 

units. 
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